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ABSTRACT

As a result of B B mixing. associated production of B-B pairs vields like-
sign lopton pairs when both B's decay semi leptonicailv. Formulas are given
for the C'P violating charge asvmmetry of these like-sign pairs. It is argued
that previous calculations based on quark diagrams are unreliable and that the
asvrnmetry might be considerably larger. It is concluded that a reasonable esti-
mate of the asvimmetry lies between 107 ° and 107, but neither the sign noy the

magnitude can bhe reliahlv calculated.
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Evidence for B- B mixing has been found  f{rom the observation of same-sign
dileptons from a svstem originally containing a B- B pair. Neglecting errors this
leads to a value

= o (1)

It is possible to search for the CP-violating charge asymmetry given b},‘2

N{+-) - N(—-) ~ Im ( T2 )
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where
2= Y (BlHyln)in Hy B 276(E, Ep) (3)
A’fl: - ]Un!;',z (4)
AM = 2M [¢F (3)

Eq. (4) for the B- B mass matrix follows from the box diagram3 considering only

the intermediate top quarks. The box diagram involves the KM matrix factors

[

c, ‘lh‘1;f (6)

which are subject 1o the unitarity constraint

The approximation used in obtaining Eq. (2) is Py - My

The main problem is the calculation of T'y.. Whereas Mo involves a sum
over virtual intermediate states which is dominated by ¢ - {. I'}2 involves a sum
over real states. The most detailed calculation i« that by Hageiira4 who assumes
these states can be described in terms of quarks (either ¢gg or ggqg). He calculates

the “absorptive part” of the box diagram. In this note we wish to look at an

alternative approach,
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We first look at the quark transitions that contribute to the transitions to

the states 'n of Eq. (3). There are three classes

A bd)—c=é+d— (d) — bd (8a)

Bl. b{d) —c-u~+d+ (d) — bd

C. b(d) —u+u—-d+ (d) — bd (8¢)

The (d) represents the “spectator™ in the initial transition: of course. the role of
d and d is exchanged if we run the arrows from right to left. In addition to these

"spectator” decays there are also exchange contribution such as

b+d—c+c—d-b (9a)

b~d—u+a-—d-b (9¢c)

We shall emphasize the spectator graphs. which dominate the caleulation of
Hagelin. but the exchange graphs do not modify our general discussion. For
each class of transition in Eq. (8) there is a characteristic combination of KM

clements

1. ¢
B, &
C. ¢
We then write
Pro—To &My - 26,8 My - E2M (10)

To interpret Eq. (10} we focus first on type A transitions. These arise from



a term in H, of the form
VigVigha+ hoe (11)

where h 4 is given explicitly in the appendix. The total width for transitions of

type Als
Ta= Vo Vg inthy By 278(E, — Ep) = Vo *Vial*Tops  (12)

Here I'i, vields the rate expected in the limit m, — 0 and p4 is the phase space
suppression factor, calculated® in the quark spectator model to be 0.12. The
corresponding expression for the contribution of A type transitions to I'j2 can be

written
T12(A) = (VaVo)? Y B haint(n ha|B) 276(E — Ey)
=€) liniha B} (CP).276(E - Ey) (13)
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where we have used a set of intermediate states which are CP eigenstates with
eigenvalues (CP),. We have used (CP)h4(CP)™! = hL and the convention
B" — d . B" - db.wih CP B"; = — BY, CP|B"} = — B".. The
quantity (CP} 4 15 the average value of CP for the intermediate states n - con-

tributing to I' 4. The same considerations hold for transitions of type C for which

pc 1if we use m, — 0. Comparing Eq. (10) with Eqg. (13) we have
M) = —py(CP); (14)

where I = 4 or . For the case of B-type transitions the contributions to
I'y: involve only the interference between the allowed (VyV, ) and the doubly-
suppressed (1,17 ) transitions. We shall also use (CP)g for the factor ( -Mp-
pr) although it only relates 1o the P values associated with this interference

Lerm.



To determine the value of 'y we may relate it to the total width. The major

contribution to I' comes from the allowed B-tvpe transitions.

Tp="ToVa® Vi P pp

where pg is estimated to be .44. Estimating from the quark model the relative
rates of other non-leptonic decays and using the measured value for semi-leptonic
decays one estimates that about 55% of all decavs are of type B so that

550

F(l -~ B oy (15)
Vot Vi s

In the calculation of Hagelin the main intermediate states are 4-quark (9g9q)
states and the relative values of the M; in Eq. (10) are determined by phase

space integrals

V3
Mjy=F (1 - 2;312)

L

where we have kept only the leading order in m3,;m7. The value of 4 in Hagelin's
calculation is 4 /3 ignoring QCD corrections and approximately unity if they are

included. Comparing Hagelin's equations for I'yy and T vields

m

Fe 8nifi0 = 006 (17)
my

t

where we have used fp = 140 Mel . m; - 5.1 GeV'. The quarntities | My pr)



which we have interpreted in Eq. (14) as (CP);, then have the values

(CP)4 = .39
(CP)g = .12 (18)
(CP)¢ = .06

where we have set 8 - 1 and m./m; = 1/3. Substituting Eqgs. (16) into Eq. (10)

and using the unitarity relation (7), we obtain the Hagelin result

2
Ty =TuF & +28 (T‘E) fcft} (19)

mp

A point emphasized by Hagelin i's that the “leading term™ in I'y2 is propor-
tional to &7 with the result that it does not contribute to the asymmetry Eq. (2)
since M, is also proportional to £7 and so has the same phase. Thus the asym-
metry is suppressed by a factor {m./m;)%. This conforms to the expectation that
in the limit m, — 0, or more rigorously, m. — m,, any CP-violating observable

like the asymmetry must vanish in the KM model.

To analyze this limit we rewrite the asvmmetry using Eqs. (2). (4). (7). {10].

and (14)
i _ <1t e 10
a- 0 v palCP)a - pptCP)g Im| 77| - pe(CP)e- = pplCP)p Im | ™
M ¢ Am e
(20)
In the limit n:.. - 0 we have p; — 1 and all (CP); become equal so that @« — 0. In

Hagelin's calculation the cancellation between the terms in the brackets is very

large

pc(CP)e B pc(CP) e

“TY a2 5 . T . v ) 2
nalChhs prCPIL_pelCPe ol gm0

g

However. we are really very far from the limit 1, 0 as indicated by the order-of-

magnitude difference between p4(~ .12) and unity and the corresponding range



of values required for (CP); in Eq. (18). Thus. from our point of view. the
large amount of cancellation in Eq. {20) requires very accurate values for the

quantities {CP);.

We believe the evaluation of (CP); using quark diagrams is not sufficiently
accurate even though the final result of Hagelin may give a reasonable order
of magnitude. At the quark level the factors (CP); represent the degree of
mismatch in phase space of the quark configuration emergent from b decay (plus
d spectator) with that of b decay (plus spectator d). To get efficient overlap.
both the d and d quarks musi have bounded momentum in the b rest frame: thus
the overall quark configuration is collinear. From this point of view (CP}; may
be roughly viewed as the fraction of final-state phase space leading to collinear
configurations. However. the physical final states contain several mesons and it
is unclear 1hat.their average CP is accurately represented by the quark model

picture.

To be specific. consider the two-meson states D* D~ and D'~ D'~ for class A
transitions. Given the limited phase space. these states. which are primarily CP-
even. may plav a major role. The corresponding states for class C, 77 and pp. are
likelhy 10 be extremely rare because of the large phase space available for extra
pions.  The qguark model. which appears to give a one-to-one correspondence
between SU(4) related final states. would seem 1o imply that the ratio of the
rates for these two-meson states is determined by phase space only. Thus we are

inclined to distrust the Hagelin relative values for (CP) 4 and (CP)c.

As one goes bevond two-meson states one adds 1o the sum in Eq. (3) states
with the opposite value of CP. Indeed all one has 10 do to change CP is 10 add a
solt 7. For states of class C the sum includes many terms of opposite sign. From
general ideas of duality we expect the quark model calculation 1o give a reasonable

estiinate of this sum. On the other hand because of long distance effects we do



not expect an accuracy as good as 10% and so believe the cancellation in Eg.

(21) is not trustworthy,

We now turp to numerical estimates of the asymmetry «. Using Egs. (4).

(5). and (15)

2l

I Doy &7 st
28— ) 3 =383 22
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where we have used the experimental result of Eq. (1) in the last equality. The
explicit KM factors in Eq. (20) can be expressed in terms of the CP-odd phase

. . . 6
invariant J of Jarlskog. Wu, and Greenberg

SL' : 2‘] CL‘
Im (—) = — Re (L) (23)
3 1, " £t

Substituting Egs. (22) and (23) in Eq. (20) we find

J : ; &
a - 7.6 ‘ " { p_ﬂ_CP)_q - pB(CP)Hl Re p(“(CP)(' - pB(CP)B RE‘*{'__’* }
o ~

!
(24)

LN

If we use the notation Vi = AX% Vg — AX3(p — in). Vig = AX%1 - p - mn)
with A = 0.22. then J = A%A%; and
a 037y { palCP)s pp(CP)y K~ pc(CP)¢ - pp(CP)p. (K - 1)} (25)
] _.
(1 p)* - n*
The only uncertainty in the numerical coefficient comnes from the use of Eq. (1).
The value ol a varies inversely as (AM T): thus the relatively farge value from

the recent experiment has the consequence of decreasing the value of a relative

1o earlier evaluations.



I{ we use the result of Hagelin. substituting Eq. {18) into Eqs. (24) or (25)

we find
a= -25: 107", (26)

independent of the value of p. To fit observed values of ¢ and ¢’ we need a value
of n of about 0.4 within a factor of 2. Thus Eq. (26) gives a negative asymmetry

with a magnitude around 10~ °.

To obtain an alternative estimate we look only at the contribution to I'y
from class A intermediate states. This should give a reasonable upper limit since
it corresponds to completely eliminating the cancellations in the Hagelin calcu-
lation. To estimate {CP) 4 we have calculated in the Appendix the contributions
of the intermediate states D™D, D'*D~ D¥D'~, and D'"D'~, The calcu-
lation is carried out using the Stech® factorization approximation which gives
reasonable results for such measured exclusive decays as B — Dn. If we assume

all other states cancel this gives

(CP)4 ~ 0.25 (27)
and from FEq. (25}
Y 1 -
P N TR B L ) (28)
CRIEE

5.6+ 10 Vsin 20,y

wherce 8;; 35 the phase of V,; in our convention. Since np .- 0 and p < 1. Eq. (2R}
gives a positive value for a. Note that if we had accepted the value of (CP)4
from Eq. (1%8) the answer would be 1.6 times as large. Thus we feel it is possible
but very unlikely that the asymmetry could be as large as 107 % Eq. (2%) is a

reasonable order-of-magnitude estimate. Fits to the KM matrix  based on the



value of = and B-B mixing tend to require |sin28,; - Thus we are led to

ro =

estimates not much bigger than 107

Comparing Egs. {26) and (28) we see thal even the sign of the asymmetry
is uncertain. Thus we cannot rule out a value even closer to zero than that
of Hagelin. Our conclusion is that a reasonable estimate of the asymmetry lies
between 10 * and 10" 2 but that neither the sign nor the magnitude can be

reliably calculated,

It has been suggested by some authors that the asymmetry might be increased
as a result of new physics. The most likely place for new physics 1o come in is
in contributions to Afy,. For example. it is possible that the large value of AAS
might be mainly due to new physics. Once one uses, as we do here, the empirical
value of AM. the only effect is in changing the phase of M);. In the Hagelin
analysis the low value of @ is in part due to the fact that ;7 and M;: have the
same phase. However we have argued that this feature of the Hagelin analysis
is unreliable. Thus while a change in the phase of M72 will certainly change the
asymmetry. we cannot tell in which direction the change will be and we do not

expect any change in our order-of-magnitude estimate.

This research has been supported in part by the .S, Department of Energy.

APPENDIX

In this appendix. we consider the contributions of the lowest Iying 2 meson
states to [ 12(A). In particular. we give estimates for D" D, DD . DD |

and 1)~ 1)
The part of the QCD-corrected effective weak Hamiltonian which gives tvpe
A contributions can be written

HE = Chy-

w

$ihy

11



| &

ha= =5 hEu(1 = b0 0 e = a1 = y)ed k(1 - oo

{4.1)

where o, 3 are color indices and f| 2 are QCD correction coefficients. In the

o |

\

leading log approximation " choosing the scale 4 ~ 5 Gel” and Agep =~ .25 Gel”,

one finds

(4.2)
f2 =~ —0.315

The f; term is a QCD-induced, effective flavor-changing neutral current term.
Of course. this term dissappears in the limit where QCD corrections are small
(fi—= 1 f2—0).

Since (CP)h4(CP)™) = k), and CP(D" D) = +1,

I o - - =\ 12
T12o(D™D7) = —£2 <D D" iha |B)|" ppp (A.3)

where ppp is the 2-body phase space factor. Similarly, we find

Tiof D D7) = (1)1 (D'*D  |hy BV ppp- (A.4)
because for total angular momentum zero. CP(D *D'~) = (-1)}! with L being
the relative orbital angular momentum of the state. Since L = 0.1.2. both
CP—even and CP-odd are possible. In our calculation we find that D" 1) " is
predominantly CP-even. Finally, since D'D must have L = 1. we find that
CP D-D ;= DD and

1
Fa(D"D7) = The(D°D )~ -Tia(DD')
2 (A.5)

which. except for £%. is real by time-reversal symmetry. Because these are not
CP--eigenstates, the sign is not determined by CP. Therefore. one must be carefu)
to be consistent in phase convention in order io calculate the sign. As we will

show. we find the sign (o be negative.



To estimate the matrix elements in Egs. (A.3-A.5). we use the factorization

approach of Stech®. Specifically. for B — D™D this vields

. G : o
DD |ha|B = a—x D 700 (DT IR B (1.6)
N
where J = ¢2~v#(1 — 75)b%, etc. The factor a; is found by combining the

direct contribution from the f; term in Eq. (A.1) with that from doing a Fierz

rearrangement of the [y term. This vields

1
a1=f1—;~§fgz].04 (47)

The matrix elements in (A.4) and (A.5) factorize in a completely analogous way.

Using Lorentz covariance and parity, the most general forms of the needed

matrix elements can be written

{D‘(q)\AE“ 0) = 1fpgy (A.8a)
(D' (g.8) Vi 0} = fpempeci(q) (4.8)
DKV Bp), = fi(p ks fo(p— k), (1.9)

D (ke) AL B(p)) = ~ife k) - ial(s plpt k)~ ia_(s -p)(p k),

(A.10a)
(D7 (kye) V" iBlp) . = gsppan s Mk} (A.100)

1112
where

J-- f.ax. and g are real. Lorentz invariant form faciors which depend
on the kinematic scalar ¢ = {(p— k)*. The decav constants. fpand fp-. are also
real. The relative phase between the matrix elements in Eqs. (A.10) is the resuls

of time -reversal syrmmetry. The remaining phases are the result of a consistent

choice of phases for pseudoscalar and vector states.

12



N .13
In the non-relativistic quark model. by comparing =~ to other decay constants

which have been measured. one can estimate

fo= =g ~ 175 MeV (4.11)
V' mp

where fp p- > 0 in our convention.

The form factors in {A.9) and {A.10) are calculated in the quark model
in Ref. 12 by using flavor independence at zero-recoil { p = 0,k = 0 ) and
assuming a common g°-dependence, F{g*), based on dominance of a B, pole.
Here. of course. ¢* is fixed for the 2-body decays and F(g?) suppresses the matrix
elements. As discussed in Ref. 12, ¢- and a_ cannot be determined separately
in this method. However, the lower limit of fa. = 0.35, derived in Ref. 12 from
the measurement of the ' polarization in B — D'er, is used here.

Since CPJ#{CP)™! = —J:, in this convention only the matrix elements in

A.9) and (A.10a) change sign under B — B, Dt -~ D™, Therefore,
(A.9) ge sig

1 : 9
TiD D)~ —£2 Za?GEfE 1f_{my - m3) — fom% | ppp
12[ ) Se 2 1 fD Lf ( B D) f D! D (A-]z)

R

~3.6V, | Te?

Also. since {A.10b) does not contribute ( by symmetry ). we find

5 D mi k* o o o
[2(DD) = - &2 285G [pfp "‘;‘%—*ﬂ J v as(my - mp.) +~ a-mp. ppp-
.D‘

~ Q.5 1",./,'2 r'ltff
(A.13)

Note that this term contributes with the same sign as the CP—even states. Finally,

summming over all polarization states.

. L , ] -1 o 9 9 " " T2 0 T’2
Dol PD )~ - & ;iu[G'fb.mb,{f' (3:‘— ) ~a*mi (1 - 2r — ;)

)

(1 — 4
~ 59 m g T]JﬂD‘!)-

(A.14)



where r = (mpg mp-)%. The V'V -term (g°) gives a positive contribution because
(A.10b) hehaves differently than {(A.10a) under CP. This term give< the L 1

contribution and is indeed small (~ 5%).

Therefore. if we only consider these D D-type states. we get
(CP)a~ .25 (A4.15)

where the value V| = .038. found in Ref. 12 from semi-leptonic decavs with
fa. = 0.35. has been used. Varving fa. from 0.35 to ~0.96 in the analysis of
Ref. 12 has the consequence of increasing the value of 1V, from .038 to .052,

However, there is a compensating decrease in the nurmerical coefficients of Egs.

(A.13) and (A.14) so that the value of (CP) 4 changes very little.

We have also estimated the contributions from the w7 and ¢'p intermediate
states. These arise directly from the f; term in Eq. {A.1), but including the

Fierz rearrangement they are proportional to a; where

[ Xl

U

1
I f: - .’fl g 0.063 {,’116)

While we do not trust this very small value of @2, it is probable that these
states are indeed suppressed relative 1o the others we have considered. Our very
uncertain estimate is that the contribution of these states might inerease the

magnitude of ['12. and thus (CP} 4. by 20%.

14
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